Skip to main content

Minimization

Amu_Ke_Fundye


Minimization


Minterm
  • Each product term is known as minimum term that contains all the variables used in a function.
  • A minterm is also called a canonical product term.
  • A minterm is a product term, but a product term may or may not be a minterm.

Maxterm

  • Each sum term is known as maximum term that contains all of the variables used in the function.
  • maxterm is a sum term of all variables in which each variable is either in complemented form or in uncomplemented form.
  • A maxterm is also called a canonical sum term.
  • A maxterm is a sum term, but a sum term may or may not be a maxterm.

The following are examples of product term, minterm, sum term, and maxterm for a function of three variables a, b, and c:

  • product terms: a, ac, b’c, abc, a’bc, a’b’c’, …
  • minterms: ab’c, abc, a’b’c, a’b’c’, …
  • sum terms: a, (a+b), (b+c), (a’+b), (a’+b’), …
  • maxterms: (a+b+c), (a+b’+c), (a’+b’+c’), …

Representations of Minterm and Maxterm

image001
Note: With’ n’ variables maximum possible minimum and maximum terms = 2n
With’ n’ variables maximum possible logic expression = image002
SOP (Sum of Product): A sum of product expression is two or more AND functions or functions together.
  • SOP expression is used when output becomes logic 1.
  • Example: image003
    • three minterms are there in the expression

POS (Product of Sum): It is the AND function of two or more OR function.
  • POS expression is used when output is logic ‘0’.
  • Example: image004
    • Three maxterms are there in the expression

Example: SOP and POS Equivalences for function F and Its Inverse F’.
image005
Duality Theorem: To convert positive logic into negative logic and vice-versa, dual function are used.
  • Change each AND sign by OR sign and vice versa ( +)
  • Complement any 0 or l appearing in expression.
  • Keep variable as it is.
  • Example: image006

Minimization of Boolean Expressions

The following two approaches can be used for simplification of a Boolean expression:
  1. Algebraic method (using Boolean algebra rules)
  2. Karnaugh map method

Representation of K-map

With n-variable Karnaugh-map, there are 2n cells.

Example:
  • 2 –variable K Map:
image007
  • 3 –variable K Map:
image008
  • 4 –variable K Map:
image009
NOTE: Once the Karnaugh map has been populated with 1s, 0s and Xs as specified the only task that remains is to group adjacent terms of the same state (usually 1) in groups of 2 raised to any rational power, i.e. 1, 2, 4, 8, 16, 32, 64 and so on. The larger the group the simpler the final expression. It is also possible for groups to overlap. This is often done to achieve a larger group size, hence simplifying the final expression.

Minimization Procedure of Boolean Expression using K-map

  1. Construct a K-map.
  2. Find all groups of horizontal or vertical adjacent cells that contain 1.
    • Each group must be either rectangular or square with 1, 2, 4, 8, or 16 cells.
    • Each group should be as large as possible.
    • Each cell with 1 on the K-map must be covered at least once. The same
    • cell can be included in several groups if necessary.
    • Select the least number of groups so as to cover all the 1’s.
    • Adjacency applies to both vertical and horizontal borders.
  3. Translate each group into a product term. (Any variable whose value changes from cell to cell drops out from the term)
  4. Sum all the product terms.

Note: Don’t care conditions can be used to provide further simplification of a Boolean Expression.

EXAMPLE: Simplify the following equation using a K-map (Karnaugh-map):
image010
SOLUTION: Draw the K-map and minimise.
image011image012
Regards 
Amrut Jagdish Gupta

Comments

Popular posts from this blog

Undecidability

Amu_Ke_Fundye Undecidability Decidable Problem If there is a Turing machine that decides the problem, called as Decidable problem. A decision problem that can be solved by an algorithm that halts on all inputs in a finite number of steps. A problem is decidable, if there is an algorithm that can answer either yes or no. A language for which membership can be decided by an algorithm that halts on all inputs in a finite number of steps. Decidable problem is also called as totally decidable problem, algorithmically solvable, recursively solvable. Undecidable Problem A problem that cannot be solved for all cases by any algorithm whatsoever. Equivalent Language cannot be recognized by a Turing machine that halts for all inputs. The following problems are undecidable problems: Halting Problem:  A halting problem is undecidable problem. There is no general method or algorithm which can solve the halting problem for all possible inputs. Emptyness Problem:...

Funny Shortcut to Remember Periodic Table

Amu_Ke_Fundye Funny Shortcut to Remember Periodic Table THE PERIODIC TABLE The periodic table is a tabular display of the chemical elements, organized on the basis of their atomic number's , electron configurations, and chemical properties.In order to appreciate the general trends in chemistry and to explain the deviations of some from these general trends we need to to have good knowledge about the position of those elements in periodic table. This knowledge is also extremely important for competitive exams. So, here I present a way to memorize this using some funny easy shortcut sentences. THE FIRST 18 ELEMENTS (H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar)  H ie  He   Li es  Be cause  B oron  C an N ot  O xide  Fl orine.. N e w  Na tions  M ight  Al so  Si ng  P eaceful  S ong  Cl early  A gain  THE ...

Sequential Logic Circuits

Amu_Ke_Fundye Sequential Logic Circuits In sequential logic circuit, the output is dependent upon the present inputs as well as the past inputs and outputs. Sequential circuit is of two types. Synchronous Sequential Circuit:  Change in input signals can affect memory elements only upon activation of clock signals. Asynchronous Sequential Circuit:  Change in input signals can affect memory elements at any instant of time. These are faster than synchronous circuit. Flip Flops: It is a one-bit memory cell which stores the 1-bit logical data (logic 0 or logic 1). It is a basic memory element. The most commonly used application of flip flops is in the implementation of a feedback circuit. As a memory relies on the feedback concept, flip flops can be used to design it. In synchronous sequential circuit, Memory elements are clocked flip flops and generally edge triggered. In asynchronous sequential circuit, Memory elements are unclocked flip flops / t...